Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (42): 6371-6377.doi: 10.3969/j.issn.2095-4344.2016.42.021
Previous Articles Next Articles
Han Xiao-dong1, Wang Lei2, Zheng Jun2, He Xiao-long2, Ji Jin-shan1, Fu Zhao-ying1
Received:
2016-07-25
Online:
2016-10-14
Published:
2016-10-14
Contact:
Fu Zhao-ying, Professor, Yanan University, Yan’an 716000, Shaanxi Province, China
About author:
Han Xiao-dong, Studying for doctorate, Lecturer, Attending physician, Yanan University, Yan’an 716000, Shaanxi Province, China
Wang Lei, Studying for doctorate, Attending physician, Affiliated Hospital of Yanan University, Yan’an 716000, Shaanxi Province, China
Han Xiao-dong and Wang Lei contributed equally to this work.
CLC Number:
Han Xiao-dong1, Wang Lei2, Zheng Jun2, He Xiao-long2, Ji Jin-shan1, Fu Zhao-ying1. Three-dimensional scaffold materials for cell culture and their application in tumor tissue engineering[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(42): 6371-6377.
2.1 三维细胞培养支架材料应用 以往大部分细胞都是应用二维细胞培养,但在体内,细胞则被其他细胞、组织和细胞外基质重重包围,于是,研究人员开始尝试三维细胞培养,并观察它与二维培养的差异,包括基因表达、信号转导、细胞增殖、细胞形态、细胞间相互作用及药物反应的改变。越来越多的证据表明,在三维培养系统中生长的细胞会表现出更生理的表型、相互作用及反应。因此,当结果的生理相关性很重要,或者无法通过其他方式来准确重现细胞行为时,或许应该考虑向三维转换[13-14]。卢华定等[15]研究结果证实,软骨细胞在体外单层培养会失去细胞表型,不能分泌Ⅱ型胶原,高密度培养能减缓该过程。而在Ⅰ型胶原三维立体支架中培养,有利于维持软骨细胞的表型及分泌Ⅱ型胶原的功能。因此,建议采用在三维立体支架内高密度培养软骨细胞,具有重要的临床意义。 2.1.1 胶原三维培养支架材料 三维细胞培养以常见支架三维培养模型为主,该模型能更好地模拟细胞在体内的生长自然环境。目前,建立三维细胞培养体系是组织工程肿瘤的研究热点,不同的组织细胞对三维结构载体的要求条件存在差异[16-17]。然而目前培养细胞和组织的方法多局限于二维培养研究,三维培养因没有理想的支架材料而进展缓慢。胶原蛋白是肿瘤细胞外基质的主要成分,直接或间接的参与肿瘤细胞各种生命活动,所以研究人员利用胶原支架材料建立肿瘤细胞三维培养体系。胶原蛋白种类较多,常见类型为Ⅰ型、Ⅱ型、Ⅲ型、Ⅴ型和Ⅺ型胶原蛋白,由于其具有良好的生物学特性,已成为细胞三维培养常用的支架材料。蔡国徽等[18]研究发现胶原Ⅰ具有良好的结构与性能,适宜于卵巢癌细胞体外三维培养,并能较好地维持卵巢癌细胞的形态和功能。黄俏莹等[19]将前列腺癌PC3细胞接种到4种支架材料中进行三维培养,结果显示采用支架材料的三维培养体系优于不用支架材料的二维培养体系,胶原为体外前列腺癌PC3细胞三维培养的最优支架材料。 胶原水凝胶三维细胞培养是在传统二维细胞培养的基础上,以胶原水凝胶或者固体支架的形式增加一个维度,使细胞像在体内一样生长在三维空间里。胶原水凝胶作为三维细胞培养支架材料,不但对细胞提供张力支持,而且胶原水凝胶的成分也是细胞信号的来源。这是因为胶原水凝胶的成分里含有细胞外基质相关蛋白,如胶原质,这些蛋白不但提供张力支持,而且是细胞表面受体的配体;胶原水凝胶的坚实度可以调节,可通过调节成分组成及成分配比来实现;胶原水凝胶的组分来自自然提取物,可被细胞分泌的酶所降解,更能模拟体内细胞的生长状况;胶原水凝胶提供给细胞一个完全自由的三维空间,因此生长在胶原水凝胶中的细胞才能充分展示它在体内的生长习性[20-26]。例如乳腺表皮细胞在胶原水凝胶中聚集形成被称为微组织的球状结构,准确模拟了该细胞种类在体内的生长状况。刘劲松[27]研究发现,肝细胞在壳聚糖/胶原水凝胶支架中培养10 d后形成三维的聚集细胞团;肝细胞在水凝胶支架中生长速度略慢于二维平面培养,但在三维体系下肝细胞能长时间保持细胞活性;肝细胞在水凝胶支架中三维生长后,纤维蛋白骨架发生重排,结构与在体肝组织更接近;在水凝胶支架中的三维肝肿瘤细胞模型对化疗药物的敏感性降低。由此可见,在壳聚糖/胶原水凝胶支架中形成的三维肝肿瘤模型,其细胞骨架结构更接近体内肝组织,因此可用于体外药筛模型研究。 2.1.2 丝素蛋白三维培养支架材料 丝素蛋白是目前被认可的有机高分子支架材料,具有良好的组织及细胞相容性、无毒害、可再生性等特点。前期动物急性毒性实验、体外细胞毒性实验等研究证实,利用静电纺丝方法制作出来的丝素蛋白/左旋聚乳酸支架材料具备良好的生物相容性。进一步的倒置显微镜观察显示,丝素蛋白/壳聚糖支架上的细胞看不清,随着时间的延长,支架周围细胞增多且有细胞伸入支架内;细胞不仅可以在材料表面贴附生长,并伸入材料之中[28]。说明细胞黏附率随时间的延长而增加,丝素蛋白/壳聚糖混合支架材料具有良好的细胞相容性。 水凝胶是良好的细胞外基质材料,特别适合于肝细胞组织的培养和生长,但力学性能较差且不容易成形;丝素蛋白薄膜具有良好的力学性能,可用于构建三维结构,但亲水性差,不利于细胞贴附[29-32]。李骁等[33]将肝细胞与水凝胶混合形成细胞与基质材料混合物,然后利用具有三维结构的丝素蛋白薄膜与水凝胶细胞混合物有序结合,形成具有三维内部结构的支架与细胞复合体,用于体外培养或体内植入。水凝胶采用胶原蛋白混合肝脏细胞之后热交联形成,避免了化学交联对细胞不良影响的可能性,丝素蛋白立体薄膜通过快速成型和微复形技术制造。该方法既保证了支架具有可控稳定的三维结构又为肝细胞提供了良好的微生长环境,为人工制造肝组织提供了物质基础。在肿瘤及相伴血管生长过程中,微环境中的多种理化因素协同地发挥着重要作用。 2.1.3 其他支架材料 琼脂糖是一种来源丰富、成本低廉、具有良好生物相容性的天然高分子材料,具有生物安全性和可降解性,利用其凝胶化现象可制成形状可塑的具有三维网络结构的凝胶。与其他天然材料相比,琼脂糖凝胶在机械性能上具有一定优势,如抗拉伸/压缩性、黏弹性、流变性等,但其必须与其他材料复合或者选用适宜的定型方式制成组织工程支架,以提高支架的组织相容性。海藻酸钠水凝胶具有与真皮基质成分蛋白多糖类似的结构,是较为理想的成纤维细胞培养材料。朱家源等[34]利用碳化二亚胺作为催化剂、乙二胺作为交联剂制备新型海藻酸盐水凝胶支架材料,结果证实新型海藻酸盐组织工程真皮支架克服了传统以钙离子作为交联剂的诸多缺点,能够作为成纤维细胞的三维培养系统。典型的自组装短肽在水中可形成稳定的β-sheet二级结构,在生理性环境下则能够形成稳定的纳米纤维,可进一步形成含水量达99%的水凝胶,具有高纯度、可降解及无免疫反应等突出优点,能模拟生物体内的三维基质环境。聚乳酸具有良好的生物相容性、优异的力学性能和可控的降解速率,因此被广泛用作组织工程支架材料和细胞培养微载体等。但是,由于聚乳酸材料本身存在疏水性、表面能低、表面缺乏细胞识别位点等固有缺点,影响了细胞在微载体上的黏附、增殖和分泌基质,因此改善材料的细胞相容性十分必要。张超等[35]研究无水乙醇对三维多孔聚乳酸支架材料亲水性能的改善作用,结果显示无水乙醇处理后,多孔聚乳酸支架吸附水的能力明显增加,所复合活性蛋白在支架材料内部的分布更加合理,说明无水乙醇能够迅速提高三维多孔聚乳酸支架材料的整体亲水性能,在组织工程研究中有利于材料支架和细胞或生长因子的复合。 2.2 三维细胞培养技术在肿瘤组织工程中的应用 三维培养被用于肿瘤侵袭前细胞模型的构建,进一步拓展了其在肿瘤组织工程研究中的应用。近年来众多实验研究表明,培养在三维环境中的细胞,其基因表达模式和生物学活动更接近生命有机体。最近,三维细胞培养由于其独特的优点在肿瘤细胞中也有广泛应用,目前三维细胞培养方法不仅可以用来研究微环境对肿瘤细胞动力学和细胞变化的影响,而且还可用于寻找癌细胞形成的相关通路及监测癌细胞对抗癌药物的应答等[36-38]。三维细胞培养器及培养方法可高度模拟体内肿瘤生理环境,用来检测筛选新型抗肿瘤药物的效果或检测肿瘤细胞对不同抗肿瘤药物敏感性,考虑了肿瘤细胞的营养供应、代谢废物排除、血管及血管内皮细胞的因素,接近于体内肿瘤的生长环境,进一步将体外肿瘤细胞生理环境大幅度地接近体内环境,这种新的技术将使检测筛选新型抗肿瘤药物和肿瘤细胞药敏试验提升到一个新的高度。 肿瘤患者生存率低,主要原因是有肿瘤干细胞存在而导致肿瘤的耐药、复发。肿瘤干细胞与肿瘤的转移、抗辐射和耐药密切相关,因此,筛选靶向治疗肿瘤干细胞的有效药物,对根治该类恶性肿瘤很有必要。谷峰等[39]认为肿瘤原代细胞三维立体培养法成功率高、适用范围广、所需时间短、检测药物种类多,通过筛选敏感药物对临床用药进行指导,对于实现肿瘤的个体性化疗是一项十分有意义的检测方法。已有研究表明,乳腺癌干细胞会对乳腺癌的发生、转移等产生较大影响。通过模拟肿瘤微环境,可更好地对乳腺癌干细胞增殖与分化情况进行分析。陈峻崧等[40]将普通二维细胞培养与卵巢癌肿瘤干细胞体外三维培养模型对比,探讨符合体内环境的三维培养条件,研究肿瘤干细胞生长、耐药等影响因素及机制。结果表明,与二维培养相比,三维培养卵巢癌HO8910细胞系中CD44+CD117+CSCs表现出明显的耐药性,表明BME基质胶三维培养模型可作为靶向治疗肿瘤干细胞药物筛选的理想体外模型。 肿瘤的生长依赖于血管新生,肿瘤血管生成的研究主要是观察肿瘤组织内微血管的形态与功能,阐明肿瘤诱发血管新生的机制及血管生成与肿瘤发生、发展的关系,这些研究对指导肿瘤的诊断、治疗及判断预后有重要意义。赵静等[41]证实肝癌细胞具有进行自身变形并与胶原蛋白相互作用,形成血管样通道的能力。肿瘤细胞可通过血管生成拟态结构获得血液供应。孟立祥等[42]研究结果说明,肝癌细胞具有自身变形形成血管样结构的能力,肿瘤细胞可通过血管生成拟态结构获得充足的血液供应。有实验发现,血管内皮生长因子α能促进卵巢癌细胞系血管生成拟态的形成,明显增强卵巢癌细胞侵袭和迁移的能力[43]。国内外目前用于抗肿瘤研究的血管新生模型,细胞模型包括大分子基质细胞培养模型、cytodex3血管新生模型;组织模型则为各种动物的主动脉或静脉血管新生模型;整体模型包括家兔角膜血管新生模型、鸡胚尿囊膜血管新生模型、聚合物植入模型、斑马鱼或水蛭血管新生模型。"
[1] Pinto MP,Jacobsen BM,Horwitz KB.An immunohistochemical method to study breast cancer cell subpopulations and their growth regulation by hormones in three-dimensional cultures.Front Endocrinol (Lausanne).2011;2:15. [2] Velliou EG,Dos Santos SB,Papathanasiou MM,et al.Towards unravelling the kinetics of an acute myeloid leukaemia model system under oxidative and starvation stress: a comparison between two- and three-dimensional cultures.Bioprocess Biosyst Eng. 2015;38(8):1589-1600. [3] Castrén E,Sillat T,Oja S,et al.Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum.Stem Cell Res Ther.2015;6:167. [4] Stevanato L,Sinden JD.The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res Ther. 2014; 5(2):49. [5] Fauzi I,Panoskaltsis N,Mantalaris A.Early exposure of murine embryonic stem cells to hematopoietic cytokines differentially directs definitive erythropoiesis and cardiomyogenesis in alginate hydrogel three-dimensional cultures.Stem Cells Dev. 2014;23(22):2720-2729. [6] Pal A,Kleer CG.Three dimensional cultures: a tool to study normal acinar architecture vs. malignant transformation of breast cells.J Vis Exp.2014;(86).doi: 10.3791/51311. [7] Verbridge SS,Choi NW,Zheng Y,et al. Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis.Tissue Eng Part A. 2010;16(7):2133-2141. [8] Chen G,Qi Y,Niu L,et al.Application of the cell sheet technique in tissue engineering. Biomed Rep. 2015; 3(6):749-757. [9] Balachander GM,Balaji SA,Rangarajan A,et al. Enhanced Metastatic Potential in a 3D Tissue Scaffold toward a Comprehensive in Vitro Model for Breast Cancer Metastasis.ACS Appl Mater Interfaces. 2015;7(50):27810-27822. [10] Wang K,Kievit FM,Florczyk SJ,et al.3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer. Biomacromolecules.2015;16(10):3362-3372. [11] Bumpers HL,Janagama DG,Manne U,et al. Nanomagnetic levitation three-dimensional cultures of breast and colorectal cancers.J Surg Res. 2015;194(2): 319-326. [12] Pradhan S,Liu C,Zhang C,et al.Lumen formation in three-dimensional cultures of salivary acinar cells. Otolaryngol Head Neck Surg.2010;142(2):191-195. [13] Seifarth C,Csaki C,Shakibaei M.Anabolic actions of IGF-I and TGF-beta1 on Interleukin-1beta-treated human articular chondrocytes: evaluation in two and three dimensional cultures.Histol Histopathol. 2009; 24(10):1245-1262. [14] O'Connor KC.Three-dimensional cultures of prostatic cells: tissue models for the development of novel anti-cancer therapies. Pharm Res. 1999;16(4):486-493. [15] 卢华定,蔡道章,黄冬梅,等.Ⅰ型胶原三维立体支架高密度培养软骨细胞的增殖及其分泌功能[J].中国临床康复, 2005,9(18):62-63. [16] Guiro K,Patel SA,Greco SJ,et al.Investigating breast cancer cell behavior using tissue engineering scaffolds.PLoS One.2015;10(3):e0118724. [17] Xiong G,Luo H,Zhu Y,et al.Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture.Carbohydr Polym.2014; 114:553-557. [18] 蔡国徽,韩云竹,唐斌,等.胶原三维培养下卵巢癌细胞生物学性状研究[J].现代医药卫生,2015,31(5):642-644. [19] 黄俏莹,胡艳玲,苏素勤,等.不同支架材料培养前列腺癌PC3细胞的比较[J].广西医科大学学报,2014,31(1):6-8. [20] Colom A,Galgoczy R,Almendros I,et al.Oxygen diffusion and consumption in extracellular matrix gels: implications for designing three-dimensional cultures.J Biomed Mater Res A.2014;102(8):2776-2784. [21] Borderie VM,Mourra N,Laroche L.Influence of fetal calf serum, fibroblast growth factors, and hepatocyte growth factor on three-dimensional cultures of human keratocytes in collagen gel matrix.Graefes Arch Clin Exp Ophthalmol. 1999;237(10):861-869. [22] Sato M,Ishikawa O,Abe M,et al.Opposite effects of tumour necrosis factor-alpha on type I and III collagen gene expression by human dermal fibroblasts in monolayer and three-dimensional cultures.Br J Dermatol.1998;138(1):118-121. [23] Liu Z,Quinn KP,Speroni L,et al.Rapid three-dimensional quantification of voxel-wise collagen fiber orientation.Biomed Opt Express. 2015;6(7): 2294-2310. [24] Kopanska KS,Bussonnier M,Geraldo S,et al. Quantification of collagen contraction in three-dimensional cell culture.Methods Cell Biol. 2015;125:353-372. [25] Lee B,Zhou X,Riching K,et al.A three-dimensional computational model of collagen network mechanics. PLoS One.2014;9(11):e111896. [26] Li J,Li X,Lan T,et al.Type I collagen secreted by lung cancer cells promotes cancer cell growth in a three- dimensional culture system.Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(8):1129-1134. [27] 刘劲松.体外构建三维肝肿瘤模型及药物筛选[J].中国组织工程研究,2014,18(27):4389-4394. [28] 孙莹.丝素蛋白/左旋聚乳酸支架材料与软骨细胞体外相容性研究[D].吉林省:吉林大学, 2015:1-43. [29] Tong S,Xu DP,Liu ZM,et al.Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds. Dent Mater J. 2015;34(4): 475-484. [30] Mehta AS,Singh BK,Singh N,et al.Chitosan silk-based three-dimensional scaffolds containing gentamicin- encapsulated calcium alginate beads for drug administration and blood compatibility.J Biomater Appl. 2015;29(9):1314-1325. [31] Cao Z,Wen J,Yao J,et al.Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds.Mater Sci Eng C Mater Biol Appl. 2013;33(6): 3522-3529. [32] Liu Y,Li X,Qu X,et al.The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.Biofabrication.2012;4(1):015004. [33] 李骁,贺健康,赵倩,等.水凝胶复合丝素蛋白薄膜支架的设计与快速成形制造.全国快速成形与制造学术会议,2011 [34] 朱家源,王琴梅,朱斌,等.新型海藻酸盐水凝胶真皮支架材料的制备及其表征[J].中国组织工程研究与临床康复, 2008,12(41):8099-8102. [35] 张超,胡蕴玉,徐建强,等.三维多孔聚乳酸支架材料的湿化处理[J].中华肿瘤杂志,2005,24(3):291-294. [36] Liu W,Xu J,Li T,et al.Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Anal Chem. 2015;87(19):9752-9760. [37] Ehsan SM,Welch-Reardon KM,Waterman ML,et al.A three-dimensional in vitro model of tumor cell intravasation.Integr Biol(Camb).2014;6(6):603-610. [38] Sciumè G,Shelton S,Gray W,et al.A multiphase model for three-dimensional tumor growth.New J Phys. 2013; 15:015005. [39] 谷峰,付丽,郝希山.肿瘤原代细胞三维立体培养法药物敏感检测(CD-DST)的研究[C].中国肿瘤学术大会暨海峡两岸肿瘤学术会议,2006. [40] 陈峻崧,王净,陈登宇,等.三维培养评价人卵巢癌细胞系HO8910中CD44~+CD117~+CSCs耐药性的研究[C].全国免疫学学术大会,2012. [41] 赵静,黄江生,杨爱军,等.肝细胞癌中血管生成拟态的三维细胞培养及组织学研究[J].癌症,2007,26(2):123-126. [42] 孟立祥,李建生,荚卫东,等.肝细胞癌中血管生成拟态的三维细胞培养观察[J].实用肝脏病杂志,2009,12(2):91-94. [43] 杜静.缺氧在卵巢癌血管生成拟态形成中的作用研究[D].天津:天津医科大学,2012:1-98. [44] Lü WD,Zhang L,Wu CL,et al.Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering.PLoS One.2014;9(7):e103672. [45] Ong SM,Zhao Z,Arooz T,et al.Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies.Biomaterials. 2010;31(6): 1180-1190. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||